

Configure SFM to your needs

The SFM family of stopped-flow instruments are designed for versatility.

The instruments are easily adaptable and expandable to a wide variety of rapid mixing techniques and applications.

Any SFM can be switched from optical stopped-flow, to chemical quench-flow, to freeze quench, to automatic titration capabilities, to cryo operation, to a beam-line, all in minutes, using off the shelf options.

All of these accessories are user changeable, letting you adapt the SFM-2000/3000/4000 to your labs needs without buying a completely new system.

Use the **SFM series** for:

		page
L	Titration accessory	3
	Cryo-stopped-flow -90°C	4
Ē	Quench-flow upgrade	6
Ĺ	Freeze quench	7
Ē	EPR stopped-flow	8
	Optical delay line	9
	Optical quench head	9
	mT-jump, rapid mixing temperature jump	10
	MCS-200, conductimetric detector	11
Ē	FT-IR stopped-flow	12
Ē	Umbilical link	13
Ē	Neutron head	14
Ĺ	X-Ray accessory	15
	Miscellaneous	16

Titration accessory

The programmable titrator takes advantage of high precision stepping motors for accurate micro-volume delivery.

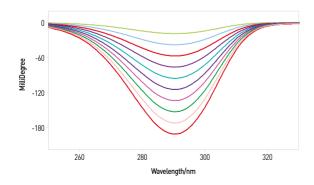
Volumes as low as 2 μ l can be injected using 1.9 ml syringe. The titrator accessory is designed to accept standard 1 cm x 1 cm cells,

and includes a micro magnetic stirrer. A 5.5 mm diameter port is available for external devices (pH or nitric oxide electrodes, temperature probes) The titration head is connected to the SFM circulating bath circuit, but an optional Peltier element is available for independent control of cuvette temperature.

Titration sequence design

The titrator is fully automated from Bio-Kine software with user-defined concentration steps. Automatic increment functions are also available, including a variable function to change the increment during titration.

Bio-Kine automatically tracks solution volumes, and alerts the user to out of range conditions.


When acquisition is made using a Bio-Logic spectrometer, a series of titration sequences is done automatically. External detection devices can be synchronized by adjusting the steps and acquisition duration.

Data collection

The user selects between single wavelength titration and spectral titrations. When the titration experiment is done at a single wavelength using a Bio-Logic spectrometer, Bio-Kine software automatically builds the titration curve at each step by plotting signal versus concentration. Depending on the spectrometer model spectra can also be recorded at each titration step and data displayed and analyzed as a 3D file.

Applications include:

- denaturation studies,
- binding reaction,
- pH denaturation,
- dissociation constants.

Specifications

Minimum injection volume	2 μl (1.9 ml syringe) 10 μl (10 ml syringe)	
Injection ports	3	
Detection windows	3	
External probes port	1 (Ø 5.5 mm)	
Temperature control	yes (-20°C to +85°C)	

Compatible with

all SFM models

Catalog n°

Titration accessory

045-01

CS-90°C, cryo-stopped-flow

The cryo option extends the range of Bio-Logic stopped-flow instruments to -90°C. It allows transient state kinetics experiments to be performed in single mixing mode.

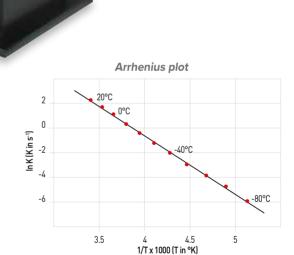
Temperature control

CS -90°C includes a cryo-bath and heater. The cooling is done by circulating liquid $\rm N_2$ in a coil immersed in cryo-solvent. Temperature dependence studies can be done from -90°C to +20°C without any reconfiguration.

A temperature probe in contact with the cuvette gives a precise temperature reading of the reaction.

Mixer and observation cell assembly

The umbilical connector connects the SFM to the mixing chamber. The chamber, 200 μl reactant transfer lines, and the last mixing stage are immersed in the cryo-solvent. CS-90°C is equipped with FFKMO-rings for full solvent compatibility. Anaerobic operation is standard. Detection is made using fiber optic cables, and the CS-90°C is compatible with all MOS models. A diode array (MOS-DA) is the most popular spectrometer for the CS-90°C.


Absorbance spectra can be collected at the fastest rate available (400 μ s per spectrum) with the diode array to trap the structure of reaction intermediates invisible at ambient temperature.

CS -90°C includes:

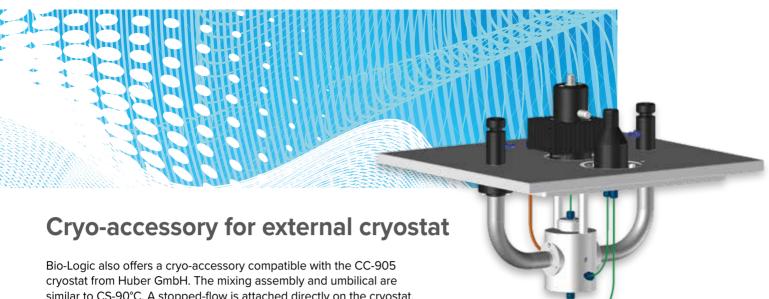
- stopped-flow adaptor, umbilical link,
- mixing compartment including 1 cm light path cuvette,
- 2 fiber optics (2 m long) with SMA connectors,
- FFKM O-rings for full solvent compatibility,
- temperature probe,
- heater for temperature regulation,
- 22 liters cuve and coil for liquid N₂ circulation.

Site requirement:

- cryo-solvent (oil, isopropanol, ethanol, etc.),
- pressurized liquid nitrogen tank,
- tubing to connect cryo-stopped-flow to N₂ tank.

Dinitrophenylacetate reaction with sodium methoxide

Specifications


Temperature range	from -90°C to +20°C
Dead time	2 ms
Mixing ratio	1:1 to 1:5
T control of umbilical link	yes
Single mixing applications	

Compatible with

all SFM models

Catalog n°

CS-90°C, cryo stopped-flow

similar to CS-90°C. A stopped-flow is attached directly on the cryostat. The temperature of the bath is set from the manual control unit and is stable to within a 0.1°C.

Customization of cryo-accessory is also possible for coupling with other cryostat models (minimum bath aperture should be 270 x 150 mm and minimal depth 150 mm), contact Bio-Logic for customized solutions.

Cryo-accessory includes:

- stopped-flow adaptor,
- umbilical link,
- mixing compartment including 1 cm light path cuvette,
- 2 fiber optics (2 m long) with SMA connectors,
- FFKM O-rings for full solvent compatibility,
- temperature probe.

Specifications

Temperature range	from -90°C to +20°C
Dead time	2 ms
Mixing ratio	1:1 to 1:5
T control of umbilical link	Yes
Single mixing applications	

Compatible with

all SFM models

Catalog n°

Cryo-accessory for external cryostat

053-11/31

Double mixing cryo-stopped-flow

Double mixing cryo-stopped-flow is possible with the SFM-4000. Solutions are brought to cryo-bath using HPLC tubing. Two mixers are immersed and a 100 μ l delay line is built-in. User can customize the delay line volume if required. Ageing time as low as 15 ms can be reached before proceeding to second mixing. Double mixing is available with liquid N_2 and cryostat cooling methods. The SFM-4000 can also be used for single mixing applications.

The delivered items are similar to single mixing

set-up except that one delay line and second built-in mixer are included. 0.4 0.3 0.2 022 وي

Specifications

Temperature range	from -90°C to +20°C
Dead time	3 ms
Mixing ratio	1:1 to 1:5
T control of umbilical link	no
Single and double mixing applications	

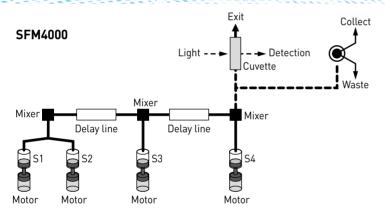
Compatible with

SFM-4000/400

Double mixing cryo-stopped-flow	Catalog n°
Double mixing CS-90°C	053-11/29D
Double mixing cryo-accessory for external cryostat	053-11/31D

Quench-flow upgrade

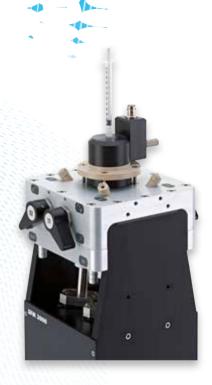
SFM-3000 and SFM-4000 systems can be converted quickly to top performance quench-flow systems by exchanging the stopped-flow observation head for the quench-flow accessory.


from Bio-Kine software.

Ageing times are varied by selecting delay lines.

Mixing is made in continuous flow mode, interrupted flow mode, or in Bio-Logic's unique pulse mode (single mixing applications only).

Bio-Logic's stepping motor technology controls flow rate precisely


The independent stepping motors remove all limitations of a single drive mechanism, and mixing ratios can be changed freely just as in stopped-flow observation mode while only consuming 50 µl of reagent.

The SFM-4000/Q is the only system with 4 independent syringes and 3 mixers. It is a unique system for triple mixing applications, such as De/H exchange experiments or radioactive labeling.

The user controls two ageing times from the software and series of "MIX - AGE - MIX" experiments can be done rapidly.

A long list of papers using our instruments in this application field is available on Bio-Logic website.

Specifications

Minimum ageing time	2 ms
Ageing method	set of delay lines
Temperature range	0°C to +85°C
Sample consumption (depending on mixing ratio and delay line used)	50 μΙ

Compatible with

SFM-3000/4000, SFM-300/400

Quench Flow upgrade	Catalog n°	
QF upgrade for SFM-3000	054-11/41	
QF upgrade for SFM-4000	054-11/42	

Freeze quench

stopped-flow experiments.

The freeze quench technique uses extreme cold to stop the reaction. Freeze quench is used to study full kinetics or to trap reaction intermediates whose presence has been determined by

Freeze quench techniques are extensively used to study metallic reaction centers in **metalloproteins** and **metalloenzymes**.

The reactants are mixed and aged for a user-defined time inside the calibrated ageing loops before ejection for freezing. A built-in ejection nozzle at the exit of each ageing loop sprays the aged solution. Mixing is fully controlled from Biokine software.

Freezing is done by ejection into a -130 $^{\circ}$ C isopentane bath cooled down by liquid N₂ circulation. The mixing part is independent from the freezing part so coupling to cold surface freezer is possible.

Sample consumption depends largely on the amount of material necessary for off-line analysis. For example, to get about 1 cm of crystals in an EPR tube, the user needs around 200 μl of solution delivered to the ejection nozzle.

Ageing times, including flying time and freezing time, range from 9 ms to several minutes.

To limit the number of steps during the packing process and avoid the risk of warming up the frozen solution, aged solution is ejected directly into a PTFE funnel. The sample holder is attached to the funnel so the sample can be packed easily with the included packing rod. Holders are available to collect samples for spectroscopic analysis by EPR/NMR, Mossbauer, and XAFS.

Freeze quench accessory includes:

- umbilical connector,
- built-in Berger Ball mixer,
- set of ageing loops with built-in ejection nozzle,
- dewar and one collection kit,
- packing rods.

Site requirement:

- liquid nitrogen and circulation system,
- isopentane,
- magnetic rod and magnetic stirrer plate,
- sample holder (EPR tube, NMR tube, etc.),
- packing rods.

Priming volume of umbilical	200 μΙ
Ageing method	set of ageing loops
Flying time	< 1 ms
Minimun ageing time in ageing loop	3 ms
Freezing time (using isopentane)	4-5 ms
Minimun ageing time (total)	9 ms

Compatible with

Catalog n°

Freeze quench accessory

EPR stopped-flow

Electron Paramagnetic Resonance (EPR) detection with freeze quench and stopped flow has been used for many years to follow kinetics.

The modular design of the Bio-Logic SFM series now allows easy coupling of a stopped-flow mixer with a variety of EPR flow resonators.

The time dependent change of amplitude of an EPR signal in a distinct field value can be followed.

This makes stopped-flow a useful technique for measurements of rate constant for formation, decay or conversion of paramagnetic species.

The EPR stopped-flow accessory consists of an umbilical connector specially engineered such that a Berger Ball mixer can be fitted on one end to minimize the dead volume of the set-up. A flow resonator is attached directly at the exit of the mixer using an adaptor ring, or optionally with HPLC type tubing. The temperature is controlled from the driving syringe to the mixer.

The dead time of the EPR stopped-flow set-up depends on the design of the flow resonator. The geometry chosen will limit the flow rate and determines the dead volume. Data showing 330 μ s dead time using two dielectric rings type resonator* have been published.

EPR stopped-flow accessory includes:

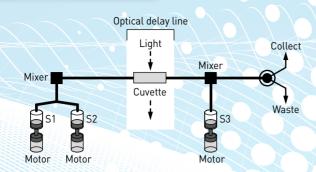
- umbilical connector,
- built-in Berger Ball mixer with open exit,
- adaptor for resonator,
- Viton® O-rings.

Not included:

- EPR flow resonator.
- * G. Lassmann, P.P. Schmidt, W. Lubitz, Journal of Magnetic Resonance, 172 (2005) 312-323

Specifications

Umbilical volume	200 μΙ	
Built-in mixer	Berger Ball	
Material	peek	
Dead time (depending on resonator geometry)	0.33 ms	


Compatible with

all SFM models

Catalog n°

EPR stopped-flow adaptor

Optical delay line

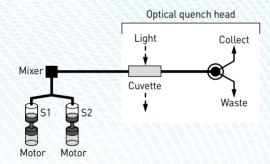
The optical delay line is used for applications where the light is used to generate a reactant or to trigger a sample change before chemical quenching.

The sample flows through the cuvette under constant illumination or the flow is stopped and the sample illuminated at a preset time before mixing with a final reactant/quencher. The cuvette access ports allow beams as large as 5 mm in diameter to be used for illumination.

The optical delay line is compatible with SFM-3000 and SFM-4000 only. A FC-15 cuvette is delivered in standard but the optical delay line is compatible with all FC type cuvettes.

Specifications

- P		
Cuvette	FC-15	
Light path	1.5 mm	
Intermixer volume	89 μΙ	
Dead time (from center of mixer to center of cuvette)	31 μΙ	


Compatible with

all SFM models

Catalog n° **053-20**

Optical delay line accessory

Optical quench head

The optical quench head is used for applications where intense light (laser, flash lamp, etc.) is used to quench a reaction.

A sample can flow through the cuvette under constant illumination, or the flow can be stopped and the sample illuminated at a preset time. Cuvette exposure is optimized for maximum quenching.

The open air design of the head allows quick dissipation of heat without compromising the amount of sample exposed to the light source.

The optical quench head is compatible with all SFM models. A FC-15 cuvette is delivered in standard but all FC type cuvettes are compatible with the accessory.

Specifications

Cuvette	FC-15
Light path	1.5 mm
Illuminated volume	4 37 μΙ

Compatible with

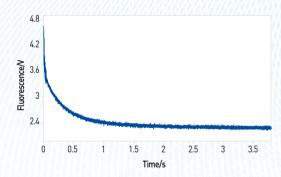
all SFM models

Optical quench accessory

Catalog n° **053-11/11**

mT-Jump, rapid mixing temperature jump

The mT-Jump accessory achieves temperature changes by mixing two solutions of different initial temperatures T1 and T2. The final temperature of the mixture (T3) is calculated from the initial temperatures T1 and T2 and the mixing ratio of the two solutions.


Three thermoelectric Peltier elements are used to control the initial temperatures of the two solutions and that of the observation cell after mixing.

The user defines the mixing ratio for the reaction and the amplitude of the temperature jump. The temperature of each Peltier element is then automatically adjusted. The mT-Jump system can accommodate all FC-type cuvettes and is compatible with all MOS models.

The amplitude and direction of the jump is entirely controlled by the user (up to \pm 40°C jump), offering new investigation domains, for example, protein refolding studies.

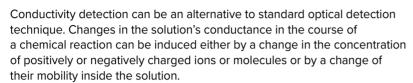
Main applications with millisecond resolution include:

- folding/refolding without chemical denaturant,
- polymerization.

Refolding of horse heart cytochrome c by cold jump from 85°C to 60°C.

Specifications

opecinications.		
Mixing ratio	from 1:1 to 1:4	
Storage lines	150 μΙ	
Cuvette compability	all FC cuvettes	
Dead time	1.5 ms	
Communication	USB	
Temperature range	from +5°C to +90°C	
Maximum temperature jump	±40°C	
Precision of T Jump	±0.1°C	
T stability (cuvette)	variation < 1% in 30 s	
T stability (storage line)	±0.2°C at 80°C	


Compatible with

all SFM models

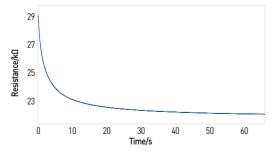
Catalog n°

mT-Jump accessory

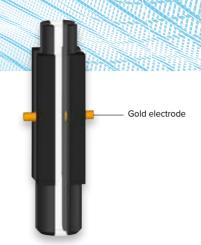
MCS-200, conductimetric detector

MCS-200 is based on Fast-Fourier-Transform (FFT) Impedance Spectroscopy. The instrument allows recording steady state **impedance spectra** of the sample in a frequency range of 10 Hz to 200 kHz, and measuring rapid kinetics with a time resolution of **200** µs per data point. Resistance, conductance and specific conductance are measured in real time with a 3 ms dead time.

The conductimetric cuvette is a customized FC-20 cuvette with 1.6 mm diameter gold electrodes (glassy carbon electrodes available on request) built in to the cuvette walls. Simultaneous absorbance measurements are possible.


Cyclic voltammetry technique is available for efficient electrode cleaning.

MCS-200 includes:


- dedicated observation head with ground connection,
- conductivity cell,
- control unit equipped with impedance board and low current capabilities,
- hard-stop,
- special Bio-Kine software version (for impedance measurements, Nyquist representation included).

Main applications include:

- (in)organic reduction/oxidation,
- proton exchange,
- metal ligand complexation,
- micelles formation from surfactants,
- ion exchange.

Fe II oxydation by H₂O₂

Specifications

- p	
Conductivity range 1 to 500 μS.cm ⁻¹	
Accuracy	1%
Electrical cell constant	6.4 cm ⁻¹
Light path	2 mm
Fastest acquisition time	200 μs
Minimum dead time	3 ms
Electrode material	gold (Ø 1.6 mm)

Compatible with

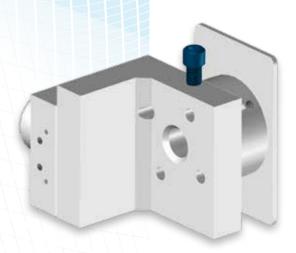
all SFM models

MCS-200 detector	091-64
	Catalog n°

FT-IR stopped-flow

Improvement in Fourier Transform Infra-Red (FT-IR) technology and use of step scan acquisition have made coupling the FT-IR with stopped-flow instruments a valuable tool for evaluating reaction rates in Infra-Red region.

FT-IR spectroscopy provides structural information in terms of bonds and mobility. It can be a very useful accessory to study infrared kinetics in the amide I region of a protein's vibrational spectrum.


The FT-IR accessory is usually attached to stopped-flow using an umbilical connector so only the observation cuvette is fitted into FT-IR sample compartment. The FT-IR flow cell is mounted in a holder compatible with most FT-IR instruments.

The flow cell uses CaF_2 windows and user can freely select light path from 15 μ m to 500 μ m by changing a spacer between windows.

Depending on the light path the total flow rate may be limited to 1ml/s. The dead time under these conditions is determined by the acquisition speed of the detector.

FT-IR accessory includes:

- FT-IR flow cell holder with built-in Berger Ball mixer,
- set of CaF, windows,
- set of spacers,
- direct exit tube.

Specifications

7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7		
Windows material	CaF ₂	
Light path	15 μm, 25 μm, 50 μm, 100 μm, 200 μm, 500 μm	
Dead time (with 100 µm spacer and 3 ml/s flow rate)	6 ms	

Compatible with

all SFM models

Catalog n°

FT-IR accessory 053-17

Umbilical link

Some stopped-flow applications require special mounting options. This is often the case on a beam line where there is no room to mount the observation head directly on top of the mixer body. The umbilical connection allows the stopped-flow mixer body and the observation head, (with last mixing stage), to be separated by up to 45 cm. With the umbilical connection you can use Bio-Logic's advanced mixing technology with more devices, and in more applications. The umbilical connection is compatible with all Bio-Logic stopped-flow instruments.

For external coupling or difficult access application

Applications where use of umbilical may be necessary:

- installation on a synchrotron beamline or a neutron scattering line,
- cryo-stopped-flow experiments at sub-zero temperatures,
- high temperature stopped-flow (T ≥ 80°C),
- cooling of the observation head and flow lines while the rest of the instrument is maintained at a different temperature (when stock solutions are not very stable at experimental temperature),
- positioning of the observation head in a spectrometer magnet (for this application all parts will be metal free),
- coupling to FT-IR or EPR spectrometer.

Specifications

Volume of flow line ⁽¹⁾	200 μΙ
Number of flow lines	2
Length of umbilical link ⁽¹⁾	45 cm
Temperature control	yes

(1): different length available (multiple of 45 cm)

Compatible with

all SFM models

Catalog n°

Umbilical link accessory

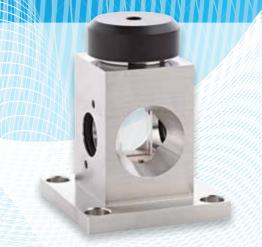
047-62

Combining stopped-flow technology with small-angle neutron scattering gives the user valuable information about the early stages of reactions occurring during growth and formation of micelles or vesicles. It can also be applied to other soft condensed matter studies such as growth of inorganic particles in an organic matrix or growth of mesoporous structures.

Small-Angle Neutron Scattering (SANS) is a technique that measures the deviation at small angles (from less than one degree to several degrees), of a neutron beam due to small particles in the sample. These structures could be clusters in alloys, polymers, or biological macromolecules and their dimensions are usually in the range of 10 to 100 nanometers.

The neutron scattering observation head is designed with a 44° opening for a large solid angle so the detector can get the maximum scattering information. A standard Berger Ball mixer is built into the neutron head. Reactions takes place in a 1 mm light path quartz cuvette.

The stopped-flow instrument can be fitted onto the neutron beamline using the umbilical link to mount the neutron head if needed.


While the maximum flow rate is usually limited to 2 ml/s, with the neutron cell, the overall dead time is determined by the acquisition speed of the detector.

Neutron scattering accessory includes:

- observation head with large opening window,
- FFKM O-rings (stopped-flow must also be equipped with FFKM for full solvent compatibility),
- quartz cuvette,
- Berger Ball mixer (hard-stop not included).

Typical applications include:

- soft condensed matter,
- micelles and vesicles,
- protein/protein interactions,
- change of quaternary structure.

Specifications

Solid angle aperture	44°C	
Light path	1 mm	
Temperature control	yes	
Spare cuvette part number	OPT3100Q	

Compatible with

all SFM models

Catalog n°

Neutron head accessory

Time Resolved Small Angle X-Ray Scattering (TR-SAXS) has become a popular technique to characterize nanostructures.

The X-Ray observation head is engineered with a 60° opening to maximize the solid angle so both Small Angle (SAXS) and Wide Angle (WAXS) scattering applications can be covered. A standard Berger Ball mixer is built-in in the X-Ray head.

The X-Ray head is available with three sizes of capillary holder (OD 1.1, 1.5 and 2 mm). All holders can be fitted in the same observation head. A special capillary holder with 90° windows is also available for simultaneous optical and X-Ray measurements. Depending on capillary geometry a flow rate up to 7-8 ml/s can be used.

The SFM can be fitted onto the synchrotron beamline or bench-top X-Ray station. If space is not available around the beam line the X-Ray head can be combined the umbilical link.

X-Ray head includes:

- observation head with large opening window,
- capillary holder,
- Berger Ball mixer,
- hard-stop (capillaries not supplied).

For applications where the user needs to simultaneously measure XAFS and absorbance along a longer light path, a customized TC-50 cuvette (5 mm light path) with thinner walls is available. Contact Bio-Logic for details.

Specifications

Solid angle aperture	60°C	
Maximum flow rate	8 ml/s	
Temperature control	yes	

Compatible with

all SFM models

X-Ray acces	sory	Catalog n°
X-Ray upgrade	for small capillaries, OD 1.1 mm	053-11/18
, 13	for medium capillaries, OD 1.5 mm	053-11/25
	for large capillaries, OD 2 mm	053-11/36

Miscellaneous

Cuvette

The SFM observation head was designed so the cuvette can be changed in seconds without draining the temperature control circuit. The choice of a cuvette is made depending on the detection technique, the signal level needed, and the rate of the reaction to follow. The dead time is inversely proportional to flow rate and therefore cuvette volume. The signal level is proportional to path length. The fastest dead time (0.2 ms) is achievable with microcuvette accessory (µFC-08). Longer light paths are usually more adapted for absorbance measurements and shorter light paths for fluorescence.

Cuvette	light path	Catalog n°
FC-08	0,8 mm	054-08
FC-15/7.5	0,75 mm and 1,5 mm	054-15/7.5
FC-15	1,5 mm	054-15
FC-20/10	1 mm and 2 mm	054-20/10
FC-20	2 mm	054-20
TC-100/10F	1 mm and 1 cm	054-60
TC-50/10F	1 mm and 5 mm	054-53
TC-50/15T	1,5 mm and 5 mm	054-55
μFC-08	0,8 mm	053-05
μTC-100/10	1 mm and 1 cm	053-05/3
TC-50 cuvette holder		054-62
TC-100 cuvette holder		054-63
FC cuvette holder		054-64

Syringes

All SFM instruments are delivered with 10 ml reservoir syringes as standard. Smaller syringes are available for large mixing ratio applications or titrations. Plungers are also available as spares. Syringes are generally user changeable.

Complete syringues (barrel + plunger)	Catalog n°
1.9 ml syringe	950-27/1
6.8 ml syringe	950-27/2
10 ml syringe	950-27/3
3.6 ml syringe	950-27/4
Plungers only	
1.9 ml syringe plunger for SFM-X000	950-27/6
6.8 ml syringe plunger for SFM-X000	950-27/7

O-rings

All SFM instruments are delivered with Viton® O-rings as standard. These are suitable for any biochemical applications with aqueous samples. For applications requiring the use of organic solvents, the SFM must be equipped with Perfluoroelastomer (FFKM) O-rings. These can be installed at the time of manufacture, or added later.

Standard kit		Catalog n°
Standard Viton® O-ring kit		950-00/20
For full solve	nt compatibility	
O-ring kit FFKM	for SFM-2000/S	950-00/30
	for SFM-3000/S	950-00/31
	for SFM-4000/S	950-00/32
O-ring kit FFKM	for /Q upgrade SFM-3000	950-00/33
	for /Q upgrade SFM-4000	950-00/34

Viton® is a trademark of DuPont Performance Elastomers L.L.C

Headquarters

Bio-Logic SAS

4, rue de Vaucanson - 38170 Seyssinet-Pariset France

Phone: +33 476 98 68 31 Fax: +33 476 98 69 09

Affiliate offices

Bio-Logic USA, LLC P.O.Box 30009 - Knoxville, TN37930 - USA

10 ml syringe plunger for SFM-X000

3.6 ml syringe plunger for SFM-X000

Phone: +1 865 769 3800 - Fax: +1 865 769 3801

Bio-Logic Science Instruments Pvt Ltd Unit No.204, Odyssey IT Park, Road No. 9, MIDC

Wagle Estate, Thane, West, Mumbai-400604 MH, India

Phone: +91 2225842128

www.bio-logic.net

950-27/8 950-27/9